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Experiments to investigate the formation mechanism and frequency of vortex shedding 
from a sphere in uniform shear flow were conducted in a water channel using flow 
visualization and velocity measurement. The Reynolds number, defined in terms of the 
sphere diameter and approach velocity at its centre, ranged from 200 to 3000. The 
shear parameter K, defined as the transverse velocity gradient of the shear flow non- 
dimensionalized by the above two parameters, was varied from 0 to 0.25. The critical 
Reynolds number beyond which vortex shedding from the sphere occurred was found 
to be lower than that for uniform flow and decreased approximately linearly with 
increasing shear parameter. Also, the Strouhal number of the hairpin-shaped vortex 
loops became larger than that for uniform flow and increased as the shear parameter 
increased. 

The formation mechanism and the structure of vortex shedding were examined on 
the basis of series of photographs and subsequent image processing using computer 
graphics. The range of Reynolds number in the present investigation, extending up to 
3000, could be classified into three regions on the basis of this study, and it was 
observed that the wake configuration did not differ substantially from that for uniform 
flow. Also, unlike the detachment point of vortex loops in uniform flow, which was 
irregularly located along the circumference of the sphere, the detachment point in shear 
flow was always on the high-velocity side. 

1. Introduction 
Wakes behind spheres are encountered so frequently in engineering applications that 

a considerable amount of research has been conducted and massive data have been 
accumulated. In particular, many reports which are concerned mainly with the vortex 
shedding from a sphere have been published (Moller 1938; Cometta 1957; Magarvey 
& Bishop 1961 ; Achenbach 1974; Pao & Kao 1977; Taneda 1978; Kim & Durbin 
1988; Sakamoto & Haniu 1990). As described in their reports, Kim & Durbin (1988) 
and Sakamoto & Haniu (1990) have performed experiments on the vortex shedding 
frequency of a sphere over a wide Reynolds number range, and they found two distinct 
modes of unsteadiness which were associated with the small-scale instability of the 
separating shear layer and with the large-scale instability of the wake. In particular, 
they demonstrated that the higher frequency was detected only in the immediate 
downstream region of the sphere when the Reynolds number exceeded 800. Also, 
Taneda (1978) and Achenbach (1974) have demonstrated that there exist strong 
periodic fluctuations in the wake right up to the critical Reynolds number of 3 x lo5. 
Studies have also been carried out on the formation mechanism and structure of vortex 
shedding from a sphere in a uniform flow. Magarvey & Bishop classified the observed 
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wake configuration into six distinct categories : single thread, double thread, wavy, 
vortex loop, vortex ring and asymmetrical wake. In particular, it was demonstrated 
that when a Reynolds number of about 300 is reached, the vortex rings begin to 
oscillate, and the wake forms hairpin-shaped vortex loops (Magarvey & MacLatchy 
1965; Levi 1980; Sakamoto & Haniu 1990). 

Most of these studies are concerned with vortex shedding from a sphere immersed 
in uniform flow, and no cases in which the vortex shedding from a sphere immersed in 
non-uniform flow in such a way that the free-stream velocity varies in the direction 
normal to it have been investigated so far. There have been a few studies on the drag 
and lift acting on a sphere immersed in such non-uniform-flows; however, all of these 
studies except an analytical work of Auton (1 987) are concerned with the drag and lift 
on the sphere below the critical Reynolds number where periodic vortex shedding 
occurs (Bretherton 1962; Saffman 1965; O’Neill 1968; Dandy & Dwyer 1990). No 
visual observations have so far been reported of the wake of a sphere in non-uniform 
flow. 

The vortex shedding frequency of a sphere immersed in non-uniform flow is not only 
of interest as a topic in hydrodynamics but also of importance for practical cases 
involving the motion of a particle in a non-uniform flow, such as an air bubble flowing 
past a nearby wall, solid particles in pipes for pneumatic conveying, and the snow 
particles in blowing snow near the surface of the ground. Since the motion of these 
particles depends upon the wake fluctuation caused by the vortex shedding, it is 
important to know whether the presence of shear in the approaching stream has much 
of an effect on the mechanism by which the vortices are shed. Another case of a sphere 
immersed in non-uniform flow concerns the laminar-to-turbulent transition of the 
boundary layer. Hall (1967) examined the transition induced by small bluff bodies, 
including spheres, which were suspended at various heights above a flat surface within 
a developing boundary layer. He concluded that the mechanism by which the laminar- 
to-turbulent transition occurred was dependent upon the stability characteristics of the 
wake of the suspended body rather than the stability characteristics of the boundary 
layer. Thus, it is important to know the shedding conditions and detailed characteristics 
of vortices generated behind a sphere in non-uniform flow. The details of the behaviour 
of vortices, however, are still very much in question. 

The purpose of the present paper is to clarify the vortex shedding frequency and 
wake structures of a sphere immersed in uniform shear flow. The Reynolds number, 
which is defined in terms of the sphere diameter and approach velocity at  its centre, 
varied from 200 to 3000. Also, the shear parameter, defined as the transverse velocity 
gradient of the shear flow, non-dimensionalized by the approaching velocity and 
sphere diameter, varied from 0 to 0.25. First, the dependence of the vortex shedding 
frequency on the Reynolds number and shear parameter is examined in detail. 
Secondly, the formation mechanism and structure of the vortices shed from the sphere 
are examined on the basis of series of photographs and image-processing methods 
using computer graphics. Finally, the relationship between the wake configuration and 
the vortex shedding frequency of the sphere is closely examined. 

2. Experimental arrangements 
2.1. Experimental apparatus 

Experiments were performed in a recirculating water channel, as shown in figure 1 (a) .  
The test section of the channel was rectangular in shape and had a width of 29 cm, 
depth of 30 cm, and length of 1 .O m. The surface of the test section was a free surface; 
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Light 

FIGURE 1. Experimental apparatus. (a) Schematic diagram of water channel facility (dimensions in 
mm). (b )  Schematic diagram of arrangement for honeycomb block, sphere and observation system. 
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however, no appreciable waves were observed on the free surface during the 
experiments. The test section of the channel consisted of transparent glass plates 5 mm 
in thickness to allow flow visualization. Thus, the flow pattern could be observed from 
the top and sides of the test section. The velocity in the test section was controlled by 
a valve installed in the return section and varied from 0.8 to 10.3 cm s-l at the sphere 
centre. Two turbulence-reducing screens, in series, consisting of urethane and wire 
gauzes were provided in a calming chamber upstream of the test section to break up 
large disturbances of flow caused by the discharge from the return pipe. Also, in order 
to obtain a wide range of Reynolds numbers, the kinematic viscosity of the water was 
varied in the range of 1.146-0.602 mm' s-l by changing the water temperature from 15 
to 45 "C. 

Spheres tested were steel balls as used in bail bearings. Thirty-four spheres were 
employed, with diameters ranging from 3 to 35 mm. All were finished to a high 
standard and polished so that an assumption of hydraulic smoothness would be 
justified. Each had a small hole through which was threaded a fine suspension wire 
0.1-0.2 mm in diameter which was attached perpendicularly to the floor of the test 
section shown in figure 1 (b). The spheres were fixed at the centre of the test section by 
the suspension wire. All were positioned 100mm from the downstream face of a 
honeycomb block, 150 mm from the floor of the test section and 145 mm from its 
sidewalls. In many of the reported studies on spheres, the sphere was supported from 
the rear by a small steel rod. It is somewhat doubtful whether the thin wire used to 
suspend the spheres in the present study exerts an influence on the boundary layer of 
the spheres. Taneda (1956) and Pruppacher, Le Clair & Hamielec (1970) have reported 
that when the Reynolds number of a circular cylinder is smaller than 5.0, the wake 
almost fails to form, because the separation of the boundary layer occurs near the rear 
stagnation point. In the present study, since the Reynolds numbers based on the 
diameter of the suspension wire are smaller than 1.0, the wake formed behind the 
suspension wire is very small. Also, as mentioned in $4, the Strouhal numbers of a 
sphere with a suspension wire in a uniform flow almost coincide with those of a sphere 
supported from the rear by a small steel rod. Thus, it can be considered that the 
suspension wire scarcely disturbs the boundary layer on the surface of the sphere. 

2.2. Measurement procedures 
The distribution of the longitudinal velocity component of the shear flow was obtained 
by measuring the time of travel of hydrogen bubbles produced by a pulsed voltage 
from a tungsten wire 10 pm in diameter and 28 cm in length, thereby forming the 
timelines. The wire was set parallel to the horizontal y-axis (see figure 1) and then was 
arbitrarily moved in the direction of the x- and z-axes. The visualized timelines were 
recorded on a video system having a frame rate of 30 frames per second, and then 
processed by an image-processing method using a computer, so that the velocity 
distribution of the shear flow was precisely determined. 

Wake flow patterns of the sphere in uniform shear flow were visualized by using 
uranine dye. The uranine dye was injected using a stainless steel tube with a diameter 
of 1 mm which was positioned 80 mm upstream of the front stagnation point of the 
sphere. After the uranine dye was injected for the specified period of time, the stainless 
steel tube was removed from the test section in order to avoid any disturbance 
generated by it. The visualized wake patterns of the sphere were recorded on a video 
system with the light-sheet scanning method. The light sheet was swept by driving a 
cart on which was mounted a slide projector containing a slit cartridge with a width 
of 2 mm. The cart was reciprocally driven by an induction motor and a crank in the 
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FIGURE 2. Schematic diagram of flow visualization system. 

horizontal direction with a stroke of 120 mm, as shown in figure 2. Also, signals from 
a photomicrosensor attached to the shaft of the induction motor, which repeatedly 
switches on and off, were recorded by the video system as standard signals for 
obtaining the sweeping time. Cross-sectional images in the visible range obtained in 
approximately 1/30 s were reflected by a mirror which was placed at a downstream 
position and recorded by the video system through a CCD camera. By replaying, on 
the basis of the signal from the photomicrosensor which provided the information for 
the sweeping phase, images were digitized frame by frame by a video digitizer and 
stored in a computer. The time coordinate was then converted into the spatial 
coordinate to create three-dimensional image data. Since the time interval from frame 
to frame is 1/30 s, and the sweep period of the light sheet is about 1.40 s, approximately 
21 cross-sectional images are taken for one sweep of the light sheet. Also, since the 
periodicity of the vortex shedding is approximately 8 s, about 11 time-varying three- 
dimensional images can be obtained for one period of vortex shedding. 

The frequency of vortex shedding from the sphere immersed in uniform shear flow 
was determined on the basis of a power spectrum analysis of the fluctuating velocity 
detected by a hot-film sensor mounted in the wake behind the sphere. The hot-film 
sensor was positioned at about three diameters downstream of the rear stagnation 
point of the sphere. The definition of the coordinate system used in this experiment is 
presented in figure 1 (a). The origin of the coordinate system is the centre of the sphere 
which is located at mid-depth and midway between the sidewalls of the test section. The 
x-axis is in the downstream direction, the y-axis is across the channel and the z-axis in 
the depth direction of the test section. A definition sketch of a sphere in uniform shear 
flow is shown in figure 3. The diameter of the sphere is d, the approach velocity at the 
sphere centre is U and the transverse velocity gradient of the shear flow is denoted by 
G. The longitudinal velocity component will generally be written as u. 

2.3. Production of uniform shear f low 

The common practice for generating a uniform shear flow is by placing a shear- 
generating apparatus such as a tapered honeycomb (Kotansky 1966), a grid of parallel 
rods (Owen & Zienkiewicz 1957), or a pair of closely spaced shaped gauzes (Woo & 
Cermak 1992) in the flow. In the present study, by applying the method of Kotansky, 
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FIGURE 3. Definition sketch of uniform shear flow past a sphere. 

a uniform shear flow was produced by a honeycomb block which was installed at the 
upstream part of the test section, as shown in figure l(b). It was a PVC honeycomb 
block of hexagonal cells in which the distance between opposite sides (0.1 mm in 
thickness) was 4mm, shaped to a first approximation according to the theory of 
Kotansky. However, a uniform shear flow of sufficient accuracy could not be obtained 
by a honeycomb block of the first approximation. Next, the honeycomb block was 
shaped according to the second approximation on the basis of the relationship between 
the velocity profile of the shear flow generated by the first honeycomb block and its 
shape. By repeating this procedure two to three times, a honeycomb block which 
generated a uniform shear flow of sufficient accuracy could be realized. 

An example of a velocity profile of a uniform shear flow produced by the present 
experiment is shown in figure 4, which shows the transverse velocity profile at 100 mm 
(x = 0) from the downstream surface of the honeycomb block at various locations in 
the z-direction. The solid straight line is the best-fit line obtained by applying the least- 
squares method to the data. The maximum deviation from the mean line is less than 
* 3 % .  An approximately linear profile was realized in the region - 100 d y d 
100 mm. Moreover, it is seen clearly that the velocity distributions at different values 
of z are similar. The same degree of accuracy was also obtained for all the other shear 
flows which were used in this study. An example of the fluctuating velocity distribution 
along the y-direction at x = 0 mm is also shown in figure 4. The magnitude of 
turbulence intensity is small, ranging from 0.3% to 0.5%. Accordingly, it can be 
considered that the turbulence intensity of the approaching flow has little effect on the 
flow around the sphere. In the present work, five different honeycomb blocks were used 
to change the velocity gradient of the uniform shear flow. The transverse velocity 
gradient of the shear flow produced by the honeycomb block changed when both the 
viscosity of the water, which is dependent on the temperature, and the average velocity 
in the test section were varied. By changing the temperature and velocity in the test 
section, the velocity gradient of the shear flow G could be varied in the range of 0.04 
to 0.55 s-'. Honeycomb generators of shear flow will produce less turbulence than grid 
of parallel circular rods arranged with varying spacing along the plane of the grid 
(Owen & Zienkiewicz), and the turbulence intensities are at the same level as those by 
the method of Woo & Cermak, in which a pair of closely spaced curved gauzes with the 
upstream gauze of varying porosity and the downstream gauze of uniform porosity 
was used. 
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FIGURE 4. An example of time-mean and fluctuating velocity of uniform shear flow at the position 
where test sphere is set up (x = 0) at various locations in the z-direction: -, best-fit straight line 
for averaged slope G = 0.345 S-l; -----, deviation of f3 % from best-fit lit line; 0, z = + 100 mm; 
A, z = f 5 0  mm; 0, z = -50 mm; 0, z = - 100 mm; --0--, distribution of fluctuating velocity 
along the y-direction. 

3. Parameters to be included 
There are six parameters which govern the vortex shedding frequency of a sphere in 

a uniform shear flow: the diameter of the sphere d, the approach velocity at the sphere 
centre U, the transverse velocity gradient of the shear flow G, the kinematic viscosity 
of the fluid v ,  the projected area of the sphere S and the cross-sectional area of the test 
section C. Therefore, the functional relationship for the frequency& of vortex shedding 
from a sphere in uniform shear flow can be written as 

& = w, u, G, v ,  s, c). (1) 

By dimensional analysis, the Strouhal number based on the vortex shedding frequency 
f, of the sphere can be written as 

St =&d/U = $(Ud/v ,Gd/U,S /c) .  (2) 

Since S is the projected area of the sphere, SIC is the blockage ratio for the three- 
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dimensional body (Modi & Akutsu 1984). By introducing the Reynolds number Re and 
the shear parameter K, which are defined by 

Re = Ud/v, K = Gd/U, (3) 

(4) 
We now discuss the effect of the blockage ratio SIC included in (4). Modi & Akutsu 
(1984) have reported on the blockage effects on spheres in the Reynolds number range 
of 3Ck2000. Many detailed plots of pressure distributions, total drag and skin friction, 
the separation point of the boundary layer and the wake configuration of the spheres 
for the various blockage ratios are given in their paper. They have concluded that the 
blockage effects are essentially negligible up to around 11 YO blockage. The maximum 
blockage ratio SIC in the present study was 1.1 YO, which is very small compared with 
the criterion set by Modi & Akutsu. Thus, since the vortex shedding frequency is 
closely associated with the surface pressure, separation point and wake configuration 
of the sphere, it can be concluded that the Strouhal numbers obtained by the present 
study are practically uninfluenced by the wall confinement effects. As a result, the 
functional relationship (4) can finally be put in the following form : 

the functional relationship (2) can be expressed as 

St = $(Re, K, SIC). 

St = $(Re, K ) .  ( 5 )  
Consequently, one of the main purposes of the present study is to clarify the functional 
relationship ( 5 )  by varying the above two non-dimensional parameters. However, it 
was difficult to perform experiments in which K was constant for a wide range of 
Reynolds numbers because the Reynolds number must be varied while maintaining a 
constant value of d/U even if the velocity gradient G remains constant. Accordingly, 
a relationship among Re, K and St was inferred in the same manner as employed by 
Kiya, Tamura & Arie (1980), who have investigated the Strouhal number of two- 
dimensional circular cylinders in a uniform shear flow. Since the shear parameter and 
the Reynolds number are proportional to the sphere diameter d, if a combination of 
G, U and v is given, the measurement of the vortex shedding frequency as a function 
of the diameter yields a relation among Re, K and St. From the relation among these 
variables, one can obtain the Strouhal number for a particular value of K by a linear 
interpolation. 

4. Results and discussion 
4.1, Structure of the hairpin vortex loop 

Investigation of the structure of the hairpin vortex loop shed from a sphere in uniform 
shear flow was carried out at the Reynolds number where the vortex loops are detached 
in the regular mode. The uranine dye-visualization technique was extensively employed 
to study the structure of the hairpin-shaped vortex loops and their evolution. Figure 
5 shows side-, top- and end-view dye visualizations of the vortex loop for Re = 355 and 
K = 0.158. These photographs show the successive wake configurations when the time 
taken to detach one vortex loop is divided equally into five parts. As is obvious from 
the side-view pictures, a separated shear layer begins rolling up cylindrically at  the rear 
of the sphere immediately after a previous hairpin-shaped vortex loop is detached. 
Since the rolling up of the shear layer on the high-velocity side is stronger than that on 
the low-velocity side, the vorticity entraining in the vortex formation region from the 
high-velocity side is larger than that from the low-velocity side. Thus, the growth of 
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FIGURE 5.  Photographs of the shedding pattern of hairpin-shaped vortex loops over one period T for 
Re = 355 and K = 0.158: (i) T = 1/5; (ii) T = 2 / 5 ;  (iii) T = 3 / 5 ;  (iv) T = 4/5; (v) T = 5 /5 .  (a) Side- 
view, (b) top-view, ( c )  end-view (cross-section A-A'), ( d )  end-view (cross-section B-B'). 

vortex that forms on the high-velocity side is faster than that on the low-velocity side, 
and hence a vortex formed on the high-velocity side continues to grow while taking in 
the vorticity from the surrounding shear layer which is rolling up cylindrically. The 
growing vortex on the high-velocity side is cut off by the hollow which is formed by the 
development of instabilities (presumably Tollmien-Schlichting instabilities) generated 
on a part of the shear layer between the nascent vortex and the spiral vortex, and then 
is detached as a hairpin-shaped vortex loop. Also, from the top-view visualization it 
can be observed that the legs and head of the vortex loop are detached from the vortex 
formation region as the hairpin undergoes a stretching process. Figures 5(c )  and 5(d)  
are the end-view visualization of the vortex loop. A front-silvered wedge mirror was 
located far downstream of the sphere location to avoid upstream effects of the mirror 
on hairpin vortex generation. The apex angle of the mirror was optimized at  45", which 
was found to minimize blockage effects while providing a sufficient reflection angle. As 
is clearly seen from photograph of cross-section A-A', the shear layer which rolls up 
symmetrically at the bottom of the low-velocity side is taken into the vortex region on 
the high-velocity side while pushing up the two vortex tubes which are the roots of the 
previous vortex loop. Cross-section B-B' shows a section of the detached vortex loop. 
This figure clearly demonstrates the rotation of the legs of the vortex loop formed on 
the high-velocity side, and then these clearly change in size with time. 

The above description is based on the configuration of a laminar wake containing 
hairpin-shaped vortex loops. However, when the wake behind the sphere becomes 
turbulent, the structure of vortices is extremely obscure as shown in figure 7(b), and is 
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FIGURE 6. For caption see facing page. 
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most difficult to describe in detail. Perry & Watmuff (1981) investigated the structure 
of the turbulent wake behind an axisymmetric blunt body using a flying hot-wire 
apparatus and clarified that the geometry of the phase-averaged vector field displays 
the same general features as a hairpin-shaped vortex loop at low Reynolds numbers 
(unsteady laminar wake). Also, Perry & Lim (1978) reported that the large-scale eddy 
structures behind blunt three-dimensional bodies such as spheres are substantially the 
same. Therefore, the turbulent wake of a sphere is considered to have essentially the 
same general structure as the vortex loop system of the laminar wake, as shown in 
figure 5 (a).  Furthermore, Sakamoto & Haniu (1990) have already elucidated the 
formation mechanism of a vortex detached from the sphere in uniform flow. Its 
formation mechanism and configuration are exactly the same as in the case of uniform 
shear flow except for the detachment point of the vortex loops, i.e. the detachment 
point of the vortex loops is always fixed on the high-velocity side in the case of uniform 
shear flow, while it is not fixed in the case of uniform flow. 

In order to understand the instability of the vortex loops formed behind a sphere in 
a uniform shear flow, a good knowledge of the wake of the sphere in uniform flow is 
necessary. In the Reynolds number range studied for the uniform flow, three instability 
modes are excited : one, an axisymmetric pulsation of the recirculating zone with vortex 
shedding; two, an axisymmetric vortex shedding associated with the shear at the 
periphery of the recirculating zone; and three, a spiral mode related to a rotation of the 
separation line. When the Reynolds number exceeds 300, the first instability is excited 
and vortex shedding occurs (Taneda 1956). Vortex loops forming a series of 
interlocking loops are emitted regularly behind the sphere. When the Reynolds number 
exceeds 800, the second instability is excited and the two modes are simultaneously 
present but are unlocked (Kim & Durbin 1988; Sakamoto & Haniu 1990). The third 
instability is associated with the rotation of the separation line on the sphere, resulting 
in a spiral mode. These instability modes do not substantially change the wake 
structure of the vortex loop system, but they do affect the vortex shedding frequency 
mode. These loop-like structures in wakes behind the sphere were also encountered in 
the wakes behind axisymmetric bodies and coflowing jets and wakes (Perry & Lim 
1978). They resemble a daisy chain of interlocking loops which is similar to the ladder- 
like structure sketched by Achenbach (1974). Accordingly, since these vortex loops 
shed behind the sphere form a series of interlocking loops, the hairpin vortices flow out, 
maintaining a stable condition regardless of the single row of vortices. 

4.2. Formation process of hairpin-shaped vortex loops 

The formation process of the hairpin-shaped vortex loops shed from a sphere 
immersed in a uniform shear flow was examined on the basis of the image-processing 
methods for Re = 375 and K = 0.1, at a Reynolds number at which the configuration 
of the vortex loops is clearly conserved far downstream without being diffused. Figure 
6(a) shows the successive formation process of a detached vortex loop over one cycle 
of vortex shedding. These results represent the three-dimensional visualization images 
observed from viewpoints V,, V,, V,, as shown in figure 6(b). At the first stage, as shown 
in figure 6(a)(i), ring-shaped separation bubbles begin to grow so as to cover the rear 
part of the sphere. In particular, it is worth noting that the growth of separation 
~ ~~ ~ 

FIGURE 6. Formation process of a hairpin-shaped vortex loop represented schematically using the 
image-processing method, over one period for Re = 375 and K = 0.1. (a) Time variation of quasi- 
instantaneous three-dimensional images: (i) T = 1/4; (ii) T = 2/4; (iii) T = 3/4; (iv) T = 4/4. (b) 
Coordinate system for viewpoints V,, V,, V,. 
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FIGURE 7. Side-view visualization of hairpin vortices. (a) Uniform flow: (i) Region I (Re = 350); (ii) 
Region I1 (Re = 650); (iii) Region 111 (Re = 1350). (b) Uniform shear flow: (i) Region I (Re = 355, 
K = 0.071); (ii) Region I1 (Re = 780, K = 0.158); (iii) Region 111 (Re = 1444, K = 0.167). 

bubbles on the high-velocity side (labelled a) is faster than that on the low-velocity side 
(labelled b). At the second stage, as shown in figure 6(a)(ii), the separation bubbles on 
the high-velocity side grow in such a manner as to encircle two vortex tubes of a 
previous vortex. However, the growth of bubbles on the low-velocity side (labelled b) 
is slow and the ring shapes of separation bubbles still remain. Also, a hollow which is 
formed by the development of instabilities is generated on a part of the shear layer 
between the nascent vortex and the spiral vortex as indicated by label c. At the third 
stage, as shown in figure 6(a)(iii), the growing vortex on the high-velocity side is cut 
off by the hollow, and then is detached as a hairpin-shaped vortex loop. However, the 
separation bubbles (labelled b) on the low-velocity side shrink without growing into 
vortex loops because the vorticity entraining from the low-velocity side is absorbed by 
the two vortex tubes created on the high-velocity side. At the last stage, as shown in 
figure 6 (a)(iv), the separation bubbles indicated by labels a’ and b’ grow again to form 
the hairpin-shaped vortex loops. As is clearly seen from the above-mentioned results, 
when the sphere is placed in a uniform shear flow, the growth of separation bubbles 
into a vortex loop on the high-velocity side is much faster than that on the low-velocity 
side. As a result, since the separation bubbles generated on the low-velocity side are 
absorbed by the vortex loops formed on the high-velocity side before they can grow 
into a vortex loop, the hairpin-shaped vortices are always detached from the high- 
velocity side. 

Figure 7 shows pictures of detached vortex loops from spheres placed in uniform 
flow and shear flow for different Reynolds numbers. When Re exceeds 300, the 
detached vortex loops from the sphere in the uniform flow begin to be shed with 
regularity in strength and frequency. Also, as shown in figure 7(a)(i), once the 
detachment point of the vortex loops is fixed, it does not change for a long time. 
However, as shown in figure 7(b)(i), the vortex loops are always detached from the 
high-velocity side in the uniform shear flow. When Re exceeds 420 in uniform flow, the 
vortex loops begin to be shed irregularly in directions that oscillate intermittently from 
right to left. Furthermore, the vortex loops flow out with a twisted posture, as shown 
in figure 7 (u)(ii), because the magnitudes of circulation of the two vortex tubes whose 
directions of rotation are opposite to each other are different. In the case of uniform 
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shear flow, the twisting of the entire loops is small compared with that in uniform How, 
as shown in figure 7(b)(ii), since the detachment point is always fixed on the high- 
velocity side. When Re exceeds 800 in uniform flow, the separation bubbles located at 
a symmetrical position to that where vortex loops are detached begin to form loops 
independently. As a result, vortex loops are alternately detached from mutually 
symmetrical positions, as shown in figure 7(a)(iii). However, in uniform shear flow, the 
alternating detachment of vortex loops does not take place as shown in figure 7(b)(iii), 
since the vortex loops are formed on the high-velocity side only. 

4.3. Strouhal number 
In order to demonstrate the reliability of the present measurements, the vortex 
shedding frequency of a sphere in uniform flow was examined. Figure 8 shows the 
Strouhal number plotted against the Reynolds number for spheres in uniform flow 
together with the data of Kim & Durbin (1988), Sakamoto & Haniu (1990), 
Achenbach (1974) and Magarvey & Bishop (1961) for comparison. The results of 
Sakamoto & Haniu were obtained in a wind tunnel, and the present data are almost 
the same except for those for Reynolds numbers lower than 400. In the wind tunnel test 
performed by Sakamoto & Haniu (1990), the free-stream velocity at Reynolds numbers 
below 400 was estimated by using Roshko’s (1956) formula based on the vortex 
shedding frequency from a two-dimensional circular cylinder. However, since the first 
extensive measurements of vortex shedding frequencies by Roshko, there has been 
remarkably little agreement among the many published curves of Strouhal number 
versus Reynolds numbers for the laminar shedding region, which differ by almost 20 YO 
(Williamson 1989). Thus, this discrepancy between the two results at Reynolds 
numbers below 400 may be caused by an error involving the values of free-stream 
velocity estimated by using Roshko’s formula in the wind tunnel test. Also, the values 
of the Strouhal number measured by Kim & Durbin are similar to those obtained in 
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FIGURE 9. Strouhal number versus Reynolds number for different values of the shear parameter: 
0, present data for shear flow; m, present data for uniform flow. (a)  K = 0.05, (b)  K = 0.10, 
(c)  K = 0.15, ( d )  K = 0.20, (e )  K = 0.25. 



Shedding of vortices from a sphere in uniform shear $ow 165 

the present study; however, the features of the change in the Strouhal number with 
Reynolds number show considerable differences. For example, the Reynolds number 
at which the Strouhal number decreases rapidly is about 5.5 x lo3 in the results of Kim 
& Durbin, but it is about 3 x lo3 in the present study. Kim & Durbin measured the 
Strouhal number of a sphere in periodically excited flow which was provided by a 
loudspeaker, thus the discrepancy may be caused by the difference between a steady 
flow and an excited flow in which the vortex shedding frequency is locked in. 
Achenbach reported that for Reynolds numbers smaller than 6 x lo3, periodic vortex 
shedding did not occur, but from Re = 6 x lo3 to 3 x lo5 strong periodic fluctuations 
in the wake flow were observed. In the wind tunnel test performed by the present 
authors, vortex shedding with pseudoregularity also began to occur when the Reynolds 
number exceeded 6 x lo3. It is possible that the shear layer separated from the surface 
of the sphere changed from laminar to turbulent flow. Furthermore, it was 
demonstrated that the change in Strouhal number with Reynolds number could be 
classified into four regions, as shown in figure 8, based on the difference in wake 
configuration. Region I is the range between Re = 300 and 420 where the hairpin- 
shaped vortex loops are periodically shed in what is called a regular mode with 
regularity in strength and frequency. Region I1 includes the transitional region and is 
the range between Re = 420 and 800 where the vortex loops are shed in the irregular 
mode. Region I11 is the range between Re = 800 and 3000 where the vortex loops 
change from laminar to turbulent vortices. Also, in this region, the high-frequency 
mode of the Strouhal number which is associated with small-scale instability of the 
separating shear layer begins to be periodically generated together with the low- 
frequency mode. When the Reynolds number exceeds about 3 x lo3 (transitional 
region), the shear layer separating from the surface of the sphere begins to change from 
laminar to turbulent, and then it becomes completely turbulent at a Reynolds number 
of 6 x lo3. Also, periodic vortex shedding with the low mode frequency continues as far 
as the critical Reynolds number of 3.7 x lo5 (Region IV). 

Figure 9 shows the Strouhal number as a function of the Reynolds number for 
several values of the shear parameter in the range K = 0.05-0.25. For low values of K 
the Strouhal number for shear flow differs little from that for uniform flow, whereas 
for the larger shear parameters ( K  > 0.1) it is generally higher. The Strouhal number 
can also be classified into three regions for each value of K in the range up to Re = 
3 x lo3, which was done in the present study. The following is an explanation of the 
relationship between the change in the Strouhal number and the configuration of the 
wake in each region, including a comparison with uniform flow. 

Region I. Figure 10 shows the waveform and power spectrum of the fluctuating 
velocity which was detected by the hot-film sensor set in the wake behind the sphere. 
In Region I, the power spectrum distribution with a line spectral peak and the 
amplitudes of the waveform of the fluctuating velocity as shown in figure 10(b) suggest 
that the hairpin-shaped vortex loops are periodically shed in what is called a regular 
mode with regularity in strength and frequency. As already mentioned, the hairpin 
vortices shed from the high-velocity side of the sphere flow out, forming a single row 
of vortices. Roshko (1976) demonstrated that there is no spectral peak in the frequency 
spectrum of a single row of vortices formed in turbulent shear flow. However, since 
there is a prevailing frequency, as shown in figure lo@), the hairpin vortices are shed 
with this prominent frequency regardless of the single row of vortices. The present 
authors (1 990) have already reported that hairpin-shaped vortex loops with a regular 
mode continue to be seen up to Re = 420 for a sphere immersed in a uniform flow. 
Magarvey & Bishop (1961) also observed that this phenomenon continues until a 
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FIGURE 10. Waveform and power spectrum of fluctuating velocity. (a) No vortex region (Re = 220, 
K = 0.087), (b) Region I (Re = 355, K = 0.071), (c) Region I1 (Re = 780, K = 0.158), ( d )  Region 111 
(Re = 1444, K = 0.167). 

Reynolds number of about 410 is reached. The noteworthy aspect of the vortex 
shedding pattern in uniform shear flow is that the upper limit of the Reynolds number 
where the hairpin-shaped vortex loops are shed in the regular mode increases as the 
shear parameter is increased. For example, it extends up to Re = 480 for K = 0.15 and 
to Re = 520 for K = 0.25. It is well known that the vortices shed from a bluff body are 
formed by the concentration of vorticity entraining into the vortex formation region. 
When the vorticity entraining into the vortex formation region is very regularly 
supplied, stored and emitted, successive vortices are of the same strength and 
frequency, i.e. the shedding pattern of the vortices is always in the regular mode. When 
the Reynolds number exceeds 420 for a sphere immersed in uniform flow, the diffusion 
of the vorticity entraining into the vortex formation region is a result of the irregular 
change of the detachment point of the vortex loops. Thus the hairpin-shaped vortex 
loops begin to be generated with irregularity because the rates of vorticity concentration 
differ from one another. However, in uniform shear flow diffusion of the vorticity 
resulting from the change of the detachment point of the vortices does not occur 
because the detachment point is always fixed on the high-velocity side. Accordingly, 
the balance between the supply and emission of vorticity within the vortex formation 
region is retained up to a higher Reynolds number than for uniform flow and so 
vortices are periodically shed with regularity in strength and frequency. Also, there is 
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no remarkable increase of Strouhal number with an increase in the shear parameter K 
in this region. 

Region ZZ. In this region, which includes the transition from Region I to I1 and from 
I1 to 111, the waveform of the fluctuating velocity based on the shedding of the hairpin 
vortices becomes irregular, as shown in figure lO(c). The spectral peak in the power 
spectrum distribution also shows a band spectrum. Thus the shedding pattern of the 
vortices is irregular. Also, the upper limit of the Reynolds number in this region 
increases with the increase of the shear parameter K. For example, it extends up to Re = 
1050 for K = 0.15 and Re = 1400 for K = 0.25, compared to Re = 800 for uniform 

flow. The Strouhal number is larger than in uniform flow and increases with an increase 
of the shear parameter K. For uniform flow, in this region the detachment point of 
hairpin-shaped vortex loops changes irregularly, and they flow out with oscillation 
from left to right. However, for uniform shear flow, their detachment point is fixed on 
the high-velocity side, and scarcely any oscillations of the detached vortex loops 
occurs, as seen in figure 7(b)(ii). In general, the vortices are shed in a state of 
equilibrium between the supply and emission of vorticity in the vortex formation 
region. Accordingly, when the vorticity entraining in the vortex formation region 
increases, the formation of vortices is promoted so that the vortex shedding frequency 
is increased. Therefore, the Strouhal number becomes larger than in uniform flow since 
the vortex loops are formed in a shorter time because of both the increase of 
entrainment from the high-velocity side and no vorticity consumption in the vortex 
formation region caused by the change of the detachment point. 

Region ZZZ. For uniform flow in this region, the cylindrical vortex sheet separated 
from the sphere surface shows pulsation, and small vortex loops begin to be 
periodically shed from the vortex formation region in accordance with the pulsation 
(known as high-mode vortex shedding). Some of the small vortex loops diffuse rapidly, 
and others move downstream, intricately intertwining with the large-scale vortex loops 
(known as low-mode vortex shedding). For uniform shear flow, these features are 
qualitatively similar, and then the lower- and higher-frequency modes of the Strouhal 
number coexist (only the Strouhal number in the low-frequency mode was measured 
in the present study). The detached large-scale vortices, which may be of the same 
structure as a hairpin-shaped vortex loop, flow out from the high-velocity side without 
rotation at random, as indicated in figure 7(b)(iii), while in uniform flow, these move 
away from the sphere, rotating at random about an axis parallel to the flow through 
the centre of the sphere. Also, for K < 0.1, there is little change in the Strouhal number 
with the shear parameter. An unmistakable effect of the shear parameter becomes clear 
only for K > 0.1, in which the Strouhal number increases with an increase of the shear 
parameter. Furthermore, as is shown in figure 8, the Strouhal number changes rapidly 
when the Reynolds number exceeds about 3 x lo3 in uniform flow because the shear 
layer which separates from the sphere surface begins to change from laminar to 
turbulent flow, i.e. a transition from Region I11 to IV occurs when the Reynolds 
number exceeds about 3 x lo3. In uniform shear flow, a change in the critical Reynolds 
number from Region 111 to IV is not certain because measurements were done only up 
to Re = 3 x lo3 in the present study. However, it is presumed that the upper limit of 
the Reynolds number indicated for Region I11 also becomes larger with the increase of 
the shear parameter, since these become larger in both Regions I and 11. 

4.4. The critical Reynolds number at which vortex shedding occurs 
Kiya et al. (1980) have experimentally investigated the frequency of vortex shedding 
from a two-dimensional circular cylinder immersed in a uniform shear flow by 
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FIGURE 1 1 .  Relationship between critical Reynolds number for vortex shedding and shear para- 
meter: A, a pair of undulating threads; 0, a loop-shaped vortex; -, eye-fit boundary line. 

changing the Reynolds number and shear parameter. They have elucidated that the 
critical Reynolds number at which the vortex shedding occurred was higher than that 
in the case of uniform flow and increased approximately linearly with the increase of 
the shear parameter; for example, the vortex shedding which began at about Re = 50 
in uniform flow occurred at Re = 70 for K = 0.1, 110 for K = 0.15, 160 for K = 0.2 and 
220 for K = 0.25. 

Figure 11 shows the relationship between the Reynolds number at  which the hairpin 
vortices from a sphere in uniform shear flow begin to be shed and the shear parameter. 
This Reynolds number will henceforth be called the critical Reynolds number. As seen 
in figure 11, the critical Reynolds number decreases with the increase of the shear 
parameter, contrary to the behaviour of the Karman vortex street for a two- 
dimensional cylinder. This may be caused by the difference in vortex formation 
process. The formation of a Karman vortex street is dependent on the interaction of 
two separated shear layers rolling up into the vortex formation region; the growing 
vortex on one side continues to be fed by vorticity from the shear layer until the vortex 
becomes strong enough to be drawn by the vortex growing on the other side across the 
wake. Thus the vortex formation is strongly dependent on the balance between 
entrainment of fluid bearing vorticity from two shear layers and the concentration and 
dissipation of vorticity in the vortex formation. Accordingly, the Karman vortex street 
formed behind a circular cylinder in uniform shear flow is gradually restrained 
compared with that in uniform flow as the balance of entrainment of fluid bearing 
vorticity from the two shear layers is lost. On the other hand, the hairpin vortices 
formed behind a sphere in uniform shear flow are always formed on the high-velocity 
side, and their growth is promoted since the entrainment from the separated shear layer 
rolling up from the high-velocity side increases with increase of the shear parameter. 
As a result, vortex shedding from the sphere in uniform shear flow begins at a smaller 
Reynolds number than in uniform flow. 
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FIGURE 12. Photographs of wake flow patterns in the neighbourhood of the critical Reynolds number. 
(a) A pair of rectilinear threads (Re = 228, K = 0.077), (b) a pair of undulated threads (Re = 284, 
K = 0.086), ( c )  unstable vortex loops (Re = 284, K = 0.086), ( d )  stable vortex loops (Re = 355, 
K = 0.071). 

Kiya et al. (1980) have also shown that two wake patterns appear intermittently in 
the forms of an incipient vortex street (Morkovin 1964) and a Karman vortex street in 
a transitional region where there begins to be a change from a wavy wake to a Karma, 
vortex street. In the case of a sphere in uniform shear flow, the two wake patterns of 
a wavy wake and a hairpin-shaped vortex loop appear alternately with irregularity 
until the Reynolds number at which the hairpin-shaped vortex loop begins to be shed 
in a stable condition is reached, i.e. a pair of undulating threads and a vortex loop 
coexist at  the same Reynolds number of Re = 284, as shown in figure 12. The unstable 
vortex shedding region differs slightly in accordance with the shear parameter as shown 
in figure 11. Also, Magarvey & Bishop (1961) have investigated the formation and 
structure of nearly spherical liquid drop wakes corresponding to a range of Reynolds 
numbers from 0 to 2500. For Reynolds numbers less than 410, they determined that 
the following trailing shapes appear with increasing Reynolds number : 

Stage I, a single rectilinear thread for Re < 210; 
Stage 11, a pair of rectilinear threads for 210 < Re < 270; 
Stage 111, a pair of undulated threads for 270 < Re < 290; 
Stage IV, a procession of vortex loops for 290 < Re < 410. 

The wake configuration of a sphere immersed in uniform flow ( K  = 0) obtained in the 
present study is almost the same as that described by Magarvey & Bishop except for 



170 H. Sakamoto and H.  Haniu 

slight difference in the Reynolds number range. On the other hand, Achenbach (1974) 
has reported that a pair of undulating threads turns into a hairpin-shaped vortex when 
a Reynolds number of about 400 is reached. However, the range of Reynolds numbers 
of 300 < Re < 420 at which the hairpin vortices are shed with regularity in the present 
study corresponds well to the classification of Magarvey & Bishop. 

5. Concluding remarks 
The vortex shedding frequency and the wake structure of a sphere immersed in 

uniform shear flows were examined. The Reynolds number, defined in terms of the 
sphere diameter and approach velocity at its centre, ranged from 200 to 3000. The 
lower value was chosen so as to include the Reynolds number at which vortex shedding 
from a sphere in uniform flow occurs. Also, the shear parameter, which is the 
transverse velocity gradient of the shear flow, non-dimensionalized by the approach 
velocity and sphere diameter, was varied from 0 to 0.25. The main results for a uniform 
shear flow can be summarized as follows. 

(i) The critical Reynolds number above which vortex shedding from the sphere 
occurred was lower than that in uniform flow and decreased approximately linearly 
with the increase of the shear parameter. 

(ii) The Strouhal number of vortex shedding from the sphere was larger than that 
in uniform flow and increased with the increase of the shear parameter because the 
entrainment of fluid bearing vorticity from the shear layer on the high-velocity side 
increased. 

(iii) The vortex generated on the high-velocity side of the vortex formation region 
gradually grew, taking in vorticity from the surrounding shear layer, and was always 
detached in the form of a hairpin-shaped vortex loop from the high-velocity side, 
whereas the detachment point of a vortex loop in uniform flow changed irregularly. 

(iv) Two wake patterns, in the form of a pair of undulating threads and a hairpin- 
shaped vortex loop, appeared alternately with irregularity in the Reynolds number 
range Re = 26&300, with Reynolds number differing slightly for each value of the 
shear parameter, immediately before the Re at which the vortex loops began to be shed 
stably. 

(v) The variation of the Strouhal number with the Reynolds number up to Re = 
3000 was classified into three regions, and the relationship between the Strouhal 
number and the wake configuration in each region was determined. It was found that 
the wake configuration in each region does not differ substantially from that for the 
uniform flow. 
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